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Introduction 
General 

 Visibility issues are a factor in a large number of general aviation accidents each year.  Reduced 
visibility from continued flight into instrument meteorological conditions (IMC) often results in 
controlled flight into terrain (CFIT), or collision with ground-based obstructions and other aircraft.  Poor 
visibility also is a factor in runway incursions and ground-based accidents.  Complex and high contrast 
backgrounds also contribute to many mid-air collisions by reducing the visibility of other aircraft.  Many 
of these accidents occur in clear skies. Pilots often do not immediately recognize situations that may lead 
to poor detection and otherwise unsafe visual conditions and therefore fail to take appropriate action.  
This project has two main goals: 1) trying to better understand visual limitations under conditions of low 
visibility and decreased detection, and 2) to teach pilots how to better detect other aircraft and to more 
easily recognize unsafe visual conditions.  
 
Background 

Each year there are a large number of accidents in general aviation that result in controlled flight 
into terrain (CFIT) or collision with other aircraft or land based obstructions such as radio towers 
(Khatwa& Roelen,1996; O’Hare & Owen, 2002; Volpe, 1994).  These accidents occur not only when 
there is continued visual flight into instrument meteorological conditions (IMC), but often times in 
conditions of clear weather (reviewed by Kraus, 1995; O’Hare & Owen, 2002).  The problem of not 
being able to visually acquire other aircraft and terrain has its roots in several important issues two of 
which are considered here. 
 
1)  Learning to see the target- Visual detection is an active task rather than a passive one.  Much of our 
visual detection  is based on “top-down” processing.   That is how we see the world depends upon what 
we have learned to see through experience.  Just as when a pilot is learning how to communicate on the 
radio, knowing what to expect to hear, in large part determines our ability to understand the radio 
transmissions.  Poor audio conditions, external noise, and abundant distractions contribute to the problem 
of comprehending the transmissions.  Efficient search and detection also requires that the observer know 
what to look for, that is approximately where, when, and how it will appear.  The solutions to these tasks 
are easily calculated from known relationships.  Training is required however for pilots to perform 
quickly and automatically.  The present study has produced a cockpit aid to traffic detection (described in 
detail below) that should help many pilots improve traffic detection.  We also describe an experimental 
program that helps train pilots to recognize traffic target altitudes, direction of travel, and distance. 
 
2 )Learning to judge the visual environment-  There are three components to this issue a) the background, 
b) intervening atmosphere and c) lighting especially “flat-light”. 

The background against which targets must be detected varies from low contrast, uniform (e.g. 
clear blue sky) to complex and high contrast (e.g. cityscapes and mottled mountainous terrain).  In 
general, detection is inversely related to scene complexity.  In other words, the more complex and higher 
contrast the background, the harder it is to detect a target on it.  This is a phenomenon known as masking 
in the vision science world.   

There are various ways to characterize scene complexity and analyze the statistics of visual 
scenes.  One of these techniques involves Fourier analysis which breaks down an image into component 
spatial frequencies and a subsequent plotting of the resultant spatial frequency amplitude and phase 
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spectra.  Although it has been argued that most natural images show spatial frequency spectra that fall off 
in amplitude as 1/f, there is ample evidence that the spectra of many scenes differ from 1/f significantly 
(e.g. Field & Brady, 1997).  

An alternative to Fourier analysis involves the application of sparse coding algorithms 
(Simoncelli & Olshausen, 2001) to images from the aviation environment.  This algorithm produces basis 
functions which are believed to be generated in a similar manner to the receptive fields of visual cortical 
neurons, that is, by learning from the statistics of the environment.  Such an application provides insight 
as to the limits of applying our land based visual system to the demands of the aerial environment. In the 
present work we present data on the statistics of images from the aviation environment and compare 
those with statistics from images of terrestrial scenes. 
 
Detection models and performance 
 The sparse coding algorithms discussed above suggest a new model of detection based upon the 
differences between the basis function weightings for a target and those of the local background.  
Specifically, it would be predicted that the more different the weightings of basis functions for targets are 
from those of the local background, the easier the target should be to detect.  There are currently 
numerous models that take into account local statistics such as contrast such as that proposed by 
Ahumada (1996).  In the present study we have collected detection data using backgrounds of images 
from the aviation environment and compared model predictions from several versions of our new model 
descried above and Ahumada’s model with the detection data. 
 
Improvements in detection with the aid of lighting 
 

  External aircraft lighting, in particular strobe lights have been shown to greatly improve detection.  
When lights in different areas are flashed out of sequence a percept of motion can arise.  The 
improvement of detection in this case arises by virtue of stimulation of a visual pathway specifically 
tuned to transient changes such as flashes or motion.  The strength of this motion percept depends greatly 
upon parameters such as the timing of flashes and the distance by which they are separated.  In this study 
we present data on how these parameters contribute to the detection of targets on backgrounds of various 
complexity.   

 
Pilot education 
 
 We have developed a Powerpoint presentation with the goal of pilot education regarding visibility 
and strategies for improving detection. It is our goal to present this talk at numerous aviation gatherings 
to reach as many pilots as possible.  In addition the presentation is annotated such that it can be available 
for flight schools and other interested parties to make the presentation. This presentation is described in 
more detail below and should become available through the FAA. 
 
 
Results and Products 
 
 
Simulator  

We have completed construction of a flight simulator (PCATD) with extended visual display (see 
figure 1).  The flight simulator is approved for instrument instruction and basic flight instruction as 
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outlined by the Federal Aviation Regulations.  This simulator is currently used in experiments of visual 
detection and provides nearly 180 degrees of visual field of view.  We plan to fully utilize the simulator’s 
capabilities to answer questions regarding the influence of factors such as fatigue and inclement weather 
on detection and pilot performance. 

 

 
 
Figure 1. Flight simulator developed for visual detection and human factors experiments. 
 
 
Figure 2 shows four views from one of the panels of the PCATD with a target aircraft at different 
altitudes and distances.  The subject’s task is to press a button on the yoke when the target is detected. 
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Figure 2.  Images showing one panel of the PCATD during a detection experiment.  Images on the top 
show a Cessna at a far distance while the images in the bottom show closer aircraft.  The target aircraft in 
the left hand panels are below the horizon while those on the right are above the horizon. 
 
 
Sparse coding of aerial images. 
 
 Intuitively, the aerial visual environment may appear to be quite different from the terrestrial 
visual environment.  When looking out of an aircraft for example, there is a wide view of the sky and 
geographic features such as mountains. Objects on the ground appear tiny. However, there is a wide 
variety of possible image characteristics in both aerial and terrestrial environments and it is unknown 
how the characteristics of images from the aerial environment differ quantitatively from those of images 
from the terrestrial environment. A quantitative knowledge of such differences may be useful for 
understanding and modeling detection and visual performance for operations in novel visual 
environments. 
 Here we use a sparse coding model (Olshausen & Field 1996, 1997) to characterizing both 
terrestrial and aerial images. This approach has been shown to generate responses that are similar to those 
observed in some cells of the primary visual cortex, providing a novel method to characterize natural 
images in relation to the activities of the visual system.  In particular, the spatial properties of receptive 
fields in primary visual cortex have been characterized as localized, oriented, and bandpass, comparable 
with basis functions derived from natural images (Olshausen & Field 1996, 1997).  The properties of 
these fields may arise from the strategy of producing a sparse distribution of neural activity in response to 
these images. This suggests that sparse coding could characterize the properties of images in relation to 
responses in the cortex.  
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 Although sparse coding models derived from terrestrial-based images predict the spatial 
characteristics of receptive fields well, these analyses have been based on images sampled from the 
terrestrial environment and have not yet been applied to the aerial environment. It may be of interest to 
determine whether or not application of the same sparse code algorithm to images from the aerial 
environment would result in derivation of similar spatial characteristics of receptive fields (basis 
functions) as those derived from terrestrial images.  Consideration of the complementary issue, that is, 
whether or not basis functions derived from terrestrial images can be used to adequately describe images 
from the aerial environment, should also provide insight into adaptation of visual systems to novels 
environments.  Differences in the relative amounts of each basis function required to encode the 
information for both aerial and terrestrial images may provide insight as to the adaptive capabilities of 
visual systems that utilize sparse-coding-like “learning” mechanisms. 
 Here we investigate whether characteristics of images in the aerial environment differ from those 
of terrestrial-based images and how such differences might affect visibility. In the first analysis, we 
compared the characteristics of images of aerial and terrestrial environments using the sparse coding 
technique. In order to further characterize the adaptive response of the cortex to the aerial environment 
we applied basis functions learned from terrestrial images to both terrestrial and aerial-based images, and 
compared the weightings (coefficients) of the basis functions for these two classes of images.  
 
 Method 
 We applied a program which incorporates the sparse coding algorithm described by Olshausen 
and Field (1996) to natural images of both terrestrial and aerial environment.  The aerial images were 
obtained from the cockpit of a Cessna 206 and were taken over a period of 18 months and in 
approximately 12 states in the U.S.  including Alaska.  Images were taken with digital cameras. 
Terrestrial images were taken over a period of 24 months mainly in Reno and the surroundings but also 
in Japan and India.  
 
 Image model 
 The model starts with the basic assumption that an image, ( )xI r , can be represented in terms of a 
linear superposition of basis functions ( )xi

rφ , with amplitudes  ia
 
  (1) ( ) ( )xaxI i

i
i

rr φ∑=
The image code is determined by the choice of basis functions iφ . The coefficients, , are dynamic 
variables that change from one image to the next. They are computed for each image to satisfy the above 
equality, and these quantities constitute the output of the code. The goal of efficient coding is to find a set 
of 

ia

iφ that forms a complete code and results in the coefficient values being as statistically independent as 
possible over an ensemble of natural images.  
 Olshausen and Field suggest that natural images have ‘sparse structure’ that is any given images 
can be represented in terms of a small number of descriptors out of a large set. A specific form of low-
entropy code is sought in which the probability distribution of each coefficient’s activity is unimodal and 
peaks around zero.   
 The search for a sparse code is formulated as an optimization problem by constructing the 
following cost function to be minimized: 
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Where λ is a positive constant that determines the importance of the second term relative to the first. The 
first term measures how well the code describes the image.  is a nonlinear function (cost function). 
Learning is accomplished by minimizing the total cost function, E. For each image presentation, E is 
minimized with respect to the . The 

)( iaS

ia φ  then evolve by a gradient descent on E averaged over image 
presentations. The are determined from the equilibrium solution to the differential equation: a
 
 ( ) ( ) ),(' i

x
ii aSxrxa λφ −= ∑

r

rr  (3) 

 
Where ( )xr r

 is the residual image  
 
 ( ) ( ) ( )∑−=

i
ii xaxIxr rrr φ  (4) 

The first term of equation (3) takes a spatially weighted sum of the current residual image using the 
function iφ  as the weights. The second term applies a non-linear self-inhibition on , according to the 
derivative of S, that differently pushes activity towards zero. 

ia

The learning rule for updating iφ  is then: 
 
 ( )xrax ii

rr ηφ =Δ )(  (5) 
 
Where η  is the learning rate.  
 This algorithm seeks a set of basis functions iφ  for which  can tolerate ‘sparsification’ with 
minimum reconstruction error to find a set of 

ia

iφ that can best account for the structure in the images in 
terms of a linear superposition of sparse statistically independent events.  The basis set is overcomplete, 
meaning that there are more basis functions than effective dimensions in images. Overcompleteness in 
representation is important because it allows for the multidimensional space of position, orientation and 
spatial-frequency to be tiled smoothly without artifacts. More generally though, it allows for a greater 
degree of flexibility in the representation, as there is no reason to believe a priori that the number of 
causes for images is less than or equal to the number of pixels. 
 
 Simulation methods 
  In one image-set, the data for the training process were taken from thirty 512 x 512 pixel images. 
Training data were obtained by extracting 12 x 12 pixel image patches at random from images that were 
preprocessed by filtering with the zero-phase whitening/low-pass filter , f

4
0 )/()( fffefR −= 0 = 205 

cycles/picture. Whitening counteracts the fact that the mean-square error preferentially weights low 
frequencies. Basically corrects for the vast differences in variance across spatial-frequencies due to the 
1/f2 power spectrum of natural images. This process simulates the filtering done by the retina and LGN 
(Atick & Redlich, 1992), and also speeds the learning process. 
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  is computed by first initializing to ia
 
 ( ) ( )∑=

x
ii xIxa

r
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and then iterating equation (3) using the conjugate gradient method, halting after 10 iterations, or when 
the change in E is less than1%. 
 The iφ  were initialized to random values and were updated every 100 image presentations 
(patches). The vector length (gain) of each basis function, iφ , was adapted over time so as to maintain 
equal variance on each coefficient. 50,000 updates were taken for a stable solution. The parameter λ was 
set so that λ/σ = 0.14 with σ2 set to the variance of the images. The form of the sparseness cost function 
was S(x) = log (1+x2). 
 The sparse coding process was run for 12 image-sets for the terrestrial and aerial environments, 
respectively. Fig. 1 (a) shows examples of image-sets from each environment: (a-1) to (a-3), terrestrial; 
(a-4) to (a-6), aerial. Each image-set consists of thirty images. We prepared image-sets including 
different sceneries such as forest, mountain, desert, city, and the university campus for the terrestrial 
environment. Aerial images included both forward and down views of various terrain, geographical 
features, and structures.  
 
 Results  
 An example of a derived basis function set is shown in Fig.3   Coefficients for each of these 
functions can describe any arbitrary image from the “learning” set of images. 

 
Figure 3.   Set of basis functions “learned” from a set of aviation images (for example those from figure 
4 (a4-a6).  The relative weights (coefficients) of each of the basis functions can be used to describe any 
particular scene.  
 
 Fig. 4 (b-1) to (b-6) show the outputs of basis functions from image-sets (a-1) to (a-6), 
respectively. The basis functions from terrestrial images show clear Gabor function shapes (well 
localized, oriented, and bandpass) which are consistent with Olshausen et al.’s results. Overall, the basis 
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functions learned from aerial images are noisier than those from terrestrial images suggesting that the 
characteristics of aerial images may differ from those of terrestrial scenes. Additionally, some aerial 
image sets (e.g. Fig.4 b-4) did not converge on meaningful basis functions most probably due to a paucity 
of high spatial frequency components (e.g. including only hazy images and clouds). 
 To analyze the characteristics of the derived basis functions, we computed the power spectra of 
the functions to obtain their peak spatial frequency and orientation. For the position parameter we 
computed the Hilbert transform and took the peak of the modulus of the quadrature pair. As shown Fig. 
5, for example, the basis functions (b) learned from a terrestrial image-set (a) have different distributions 
of orientation, position, and spatial frequency. The number of basis functions with a particular orientation 
and spatial frequency were calculated and are shown in Fig. 6 (a). The orientation of each basis function 
was rounded off to the nearest 10 degree step and binned into 10-degree-steps. The same procedure was 
applied to spatial frequency using steps of 1 cycle/image (cycle/12 pixel). The derived basis functions are 
well distributed especially for vertical (0 deg.) and horizontal orientations (90 or -90 deg.). In the case of 
spatial frequency, the peak of the distribution is at 4 cycle/image.  
 Coefficients for 100 image patches in each basis functions were obtained as the output of the 
sparse coding algorithm. One set of coefficients is shown in Fig. 6 (b). This figure illustrates the 
sparseness in that not all basis functions are significantly active. To obtain the overall trend of excitation 
for the image-set, we took a root mean square (rms) of 100 coefficients in each basis function as shown 
in Fig. 6 (c). The rms of coefficients for 200 bases are re-plotted against orientation and frequency as 
shown in Fig. 3 (d). Each point corresponds to the rms of each basis function. Their distributions show 
the same trend as the distribution of the number of basis functions (a). This means that the basis functions 
are well distributed but more active in the vertical and horizontal orientations. In the case of spatial 
frequency, the points that have high coefficient values are rather scattered. Since many of the points in 
(d) overlap each other, we took a sum of the rms in each orientation (10 deg. steps) and spatial frequency 
(1 cycle/image-patch steps), respectively, as shown in Fig.6 (e). These data provide an indication of the 
overall activity of the basis functions taking into account both the number and the value of the 
coefficients. We calculated the output from all the image-sets in the same way and compared the 
characteristics of the images. It should be noted, though, that the basis functions from 5 aerial image-sets 
were eliminated because they did not converge to Gabor shapes and could not give meaningful power 
spectra.  
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F
igure 4 Examples of image-sets and basis functions. (a-1) ~ (a-3), image-sets from terrestrial 
environment; (a-4) ~ (a-6), image-sets from aerial environment. (b-1) ~ (b-6), 200 basis functions 
delivered from each image-set. 
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Figure 5 (a) An image-set from a terrestrial environment (b) Basis functions from image-set (a). These 
functions were used for the procedure in section 4. 
 
 
The results of the analysis for all the image-sets (except for the 5 aerial image-sets that failed to 
converge) are shown in Fig. 7. Fig 7 (a) and (b) show the results from12 terrestrial image-sets and those 
from 7 aerial image-sets, respectively. For all the terrestrial image-sets, the distributions of orientation 
have the same shape and clearly show more vertical and horizontal orientations (a). The distributions for 
the aerial images have no clear peak in any specific orientation (b). The distributions of spatial frequency 
also show clearer peaks for the terrestrial images than for the aerial images. Those for the aerial images 
are rather flat. Fig. 7 (c) and (d) are the averages plotted with standard deviations. Overall, the standard 
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deviations for the distributions of the terrestrial images are smaller than those of the aerial images. This 
implies that there is more variation from one image set to another in the aerial environment and the aerial 
image sets may be harder to characterize. The sums of coefficients are generally smaller for the aerial 
image sets implying that those particular basis functions are less active.  The distributions of position 
information did not show systematic differences between the terrestrial and aerial environments and we 
chose not to present those data here.   
 

 
Figure 6  (a) The number of basis functions against orientation (upper graph) and spatial frequency 
(lower graph). H and V in upper graph stand for ‘Horizontal’ and ‘Vertical’, respectively. (b) An example 
of coefficients. The coefficients of each basis functions for a patch from image-set (a). (c) Root mean 
square (rms) of coefficients from 100 patches. (d) Rms of coefficients against orientation (upper) and 
spatial frequency (lower). H and V in upper graph stand for ‘Horizontal’ and ‘Vertical’, respectively. (e) 
Summed rms of coefficients against orientation (upper) and spatial frequency (lower).  
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Figure 7  Characteristics of response against orientation (upper) and spatial frequency (lower). (a) 
Results from 12 image-sets from terrestrial environment. Each series indicate summed rms of coefficients 
from each image-set. (b) Results from 7 image-sets from aerial environment. Each series indicate 
summed rms of coefficients from each image-set. (c) Average of the summed rms of 12 image-sets from 
terrestrial environment. Error bars indicate standard deviations. (d) Average of the summed rms of 7 
image-sets from aerial environment. Error bars indicate standard deviations. 
 
Terrestrial basis functions in the aerial environment. 
 In order to further characterize the simulated response of the cortex to the aerial environment, we 
applied basis functions learned from terrestrial images to both terrestrial and aerial-based images, and 
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compared the coefficients (weightings) of the basis functions for these two classes.  We applied the basis 
functions derived earlier and shown in Fig. 5 to all other image-sets from the terrestrial and aerial 
environments. This was done in order to simulate how receptive fields in our visual cortex (derived from 
learning in the terrestrial environment) might be activated in the aerial environment.  

  
Figure 8 Characteristics of response when same basis functions were applied. 
(a) Results from 11 image-sets from terrestrial environment.  (b) Results from 12 image-sets from aerial 
environment.  (c) Average of the summed rms of 11 image-sets from terrestrial environment. Error bars 
indicate standard deviations. (d) Average of the summed rms of 12 image-sets from aerial environment.  
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 We used the same algorithm as described above except that the previously derived basis functions 
were utilized throughout all the iterations. Thus the modified algorithm sought only the optimal 
coefficients for those basis functions.  It should be noted that to avoid circularity in this analysis, we did 
not apply the basis functions to the original image set that was used to derive those functions. 
 The results for 11 image-sets from the terrestrial environment and 12 image-sets from the aerial 
environment are shown in Fig. 8. We did not included the result of the image-set which was used to 
derive these basis function because the purpose of this analysis was to examine how these basis functions 
(receptive fields) learned from one type of environment respond when they are stimulated by new 
environments. The activity (sum of coefficients) for all the terrestrial image-sets of show consistent 
trends (a). Those of aerial images differ depending on the particular image-set (b). In most aerial image-
sets, the activity remains low. Greater activity is evidenced in three image-sets. It is of interest that these 
particular image-sets include a number of down-looking views of cities, fields, and mountains (Fig. 4 (a-
4) for example) while the other image-sets showing low activity also included similar views. Further 
analysis is therefore needed to explain the differences of activity. Fig. 8 (c) and (d) show the average of 
the summed coefficients for images from the terrestrial and aerial environments, respectively. The 
averages of each environment are similar but the standard deviations are large for the coefficients from 
the aerial environment. This illustrates larger variability or poorer fit of terrestrial functions to aerial 
images. The results from analysis of aerial images suggest that our visual system, which is adapted to the 
terrestrial environment, may not be optimized for the aerial environment. 
 Image-sets used here were arbitrarily selected from various sceneries; natural environments such 
as mountains, forests, desert or city, and the university campus for the terrestrial environment, and 
mountains, city, cloudy sky, etc for the aerial environment. Even though there is a large variety in the 
content and composition of images in both environments, the resultant basis functions from the terrestrial 
images showed similar characteristics to each other but those from the aerial environment had large 
differences. This suggest that for sparse coding type “learning” in cortical receptive fields, the two 
environments may not be equivalent and vision adapted to terrestrial environments may not be optimized 
for the aerial environment.  Whether or not this lack of optimization has significant or measurable visual 
consequences needs to be determined.  In addition, since the aerial environment differs enough from the 
terrestrial environment to produce different basis functions and in some case does not present enough 
structure to “learn” sufficiently to converge on an optimal basis set then it is likely that cortical fields 
learned in such an environment would perform poorly for terrestrial image processing.  Characterization 
of cortical receptive fields that have developed in such altered and/or impoverished environments may 
reveal such deficiencies. 
 Sparse coding models simulate many of the characteristics of cells in the visual cortex 
successfully, when they utilize natural images from the terrestrial environment. It may be that sparse 
coding does not work with aerial images in the same manner as with terrestrial images because our brains 
have been developed and adapted within a terrestrial environment. If human developmental visual 
mechanisms act like sparse coding processes, the “failure” of coding for a new, unfamiliar environment 
may be predictable.  However it should also be noted that with regard to causation, the failure of some 
aerial image sets to produce reliable and consistent basis functions must rest with the nature and quantity 
of the information inherent in these images; the learning is worse in the aerial environment than the 
terrestrial environment because there is less information (structure). 
 Our results suggest that aerial images can be characterized by sparse coding model. However, 
basis functions derived from sparse coding for aerial and terrestrial environments have different 
characteristics. Basis functions from terrestrial images are consistent, while those from aerial images are 
not.  If cortical receptive fields in humans develop in a manner similar to sparse coding then the aerial 

 20 



 

environment may be relatively unusual or novel for our visual system, which is adapted to the terrestrial 
environment. Future work should address whether or not this mismatch results in measurable visual 
deficits and if rearing in altered environments produces altered receptive fields consistent with those 
predicted from sparse coding algorithms. 
 
Detection models and performance 
 
 As described above we developed several versions of a model of detection based upon the sparse 
coding algorithm described above.  We tested these models as well as a contrast masking model of 
detection proposed by Ahumada and Beard (1997) against detection data collected in our lab.  First we 
will describe the detection models and then the experimental procedures. 
 
Masking model (from Ahumada 1996) 
(Single filter model with masking by a non-homogeneous background) 
 
The following steps to create “visible contrast” images were applied to the images with and without a 
target. 
The input to the model consists of two images. The output is a perceptual distance d', representing the 
number of just-noticeable-differences between the images. Each of the following steps is applied to both 
images.  
 
• Blur. The image I is convolved with a low pass Gaussian filter FB (= e-(f/fc)^2 ), 

 B[x,y] = I[x,y] * FB[x,y].  
• Local luminance. The blurred image B is convolved with a low pass Gaussian filter FL,  

 L[x,y] = B[x,y] * FL[x,y].  
• Local contrast. The contrast image is computed from the local luminance,  

 C[x,y] = B[x,y] / L[x,y] - 1.  
• Local contrast energy. Squared contrast image values are convolved with a Gaussian low pass filter 

FE, 
 E[x,y] = C[x,y]2 * FE[x,y].  

• Local contrast gain adjustment. The masked visible contrast image is computed using a divisive 
inhibition formula,  
 V[x,y] = C[x,y] / (1+gE E[x,y])0.5.  

• Summation of image differences. The distance between the masked visibility images is based on a 
Minkowski metric with an exponent of 4, corresponding to probability summation over space,  
 d' = gC ( Σ x, y (V1[x,y] - V2[x,y])4)0.25.  

 
Some examples of the filtering procedure and resultant predictions are shown in figure 9.  The last image 
represents the probability of detection as a function of lightness.  In this case the brighter the region is, 
the more difficult target detection would be on that region. 
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Figure 9.  Examples of images filtered using the detection model of Ahumada (1996).  The last image 
represents the probability of detection as the inverse of brightness.  See text for model details. 
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Model from Sparse coding model 
 
1. The basis functions were first calculated from terrestrial images.  The sparse coding model starts with 
the basic assumption that an image, ( )xI r , can be represented in terms of a linear superposition of basis 
functions ( )xi

rφ , with amplitudes  ia
( ) ( )xaxI i

i
i
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SumSum ON(OFF)-sumON(OFF)-sum

ON(OFF)-diffON(OFF)-diff MaskingMasking

 
Figure 10.  Detection predictions for the 4 models that were tested.  In this rendition darker regions 
correspond to more difficult detection. 

 % subjects were tested.  An airplane-shaped target (0.5 deg) was shown on gray images (the 
n environment) on CRT monitor randomly in one of 4 quadrants (see figure 11).  Subjects 

 on 

 

 
Methods. 

aviatio
judged in which quadrant the target appeared.  Detection and reaction time (RT) were measured using 
either 180 random positions in 5 images and also using 19 fixed positions: each (at red dots shown
the images in figure 12).  The fixed regions were chosen to sample high, and low detection regions 
and also levels at which the models made maximally different predictions. 
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23 x 30 deg23 x 30 deg  
Figure 11.  Example of image used in detection task. 
 

 
Figure 12.  Images and fixed locations chosen for detection tasks 
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Results 
 The results from the random positions are shown in figure 13 for 2 subjects.  Performance 
correlated well with predictions for all 5 subjects although there were also examples of large 
discrepancies between each of the model predictions and the data. 
 The results from the fixed position tests are shown in figure 14 and 15.  The detection and 
reaction time results are shown in figure 14 while the results of a comparison of the models is shown in 
figure 15.  In this figure we plot the sum of the squared error of the model fits for 5 subjects.  We found 
that although the image analysis based on sparse coding was quite useful for quantifying the image 
characteristics, the models developed using the algorithm did not provide significant advantage over the 
mathematically simpler Ahumada and Beard model.  The frequent departures from the model predictions 
in general suggest that other variables not well described by the models need to be accounted for in an 
improved model of detection. 

In the future we plan to test the predictions of the models against behavioral detection results 
obtained in a more realistic aviation setting include distractions and flying tasks provided by the flight 
simulator. 
 
 

 
Figure 13.  Plots of model predictions vs. detection data for the random position condition. 
 

detect undetect
0
2
4
6
8

10
12
14

detect undetect
0
1
2
3
4

detect undetect
0
5

10
15
20
25

detect undetect
0
2
4
6
8

10 RL

detect undetect
0
2
4
6
8

10
12
14

Pr
ed

ic
tio

n

detect undetect
0
1
2
3
4

Pr
ed

ic
tio

n

detect undetect
0
5

10
15
20
25

Pr
ed

ic
tio

n

detect undetect
0
2
4
6
8

10

Pr
ed

ic
tio

n

YM Sum

ON-sum

ON-diff

Masking

0 5 10 15 20 25 30
0

10
20
30

RL

0 5 10 15 20 25 30
0

10
20
30

R
T 

(s
ec

)
YM

0 5 10 15 20 25
0

10
20
30

0 5 10 15 20 25
0

10
20
30

R
T 

(s
ec

)

0 1 2 3 4 5
0

10
20
30

0 1 2 3 4 5
0

10
20
30

R
T 

(s
ec

)

0 2 4 6 8 101214
0

10
20
30

Prediction
0 2 4 6 8 101214

0
10
20
30

Prediction

R
T 

(s
ec

)

 26 



 

0 5 10 15 20 25 30
0

0.2
0.4
0.6
0.8

1

D
et

ec
tio

n 
R

at
e

YM

0 5 10 15 20 25
0

0.2
0.4
0.6
0.8

1

D
et

ec
tio

n 
R

at
e

0 1 2 3 4 5
0

0.2
0.4
0.6
0.8

1

D
et

ec
tio

n 
R

at
e

0 2 4 6 8 101214
0

0.2
0.4
0.6
0.8

1

Prediction

D
et

ec
tio

n 
R

at
e

0 5 10 15 20 25 30
0

0.2
0.4
0.6
0.8

1
RL im 1

im 2
im 3
im 4
im 5

0 5 10 15 20 25
0

0.2
0.4
0.6
0.8

1

0 1 2 3 4 5
0

0.2
0.4
0.6
0.8

1

0 2 4 6 8 101214
0

0.2
0.4
0.6
0.8

1

Prediction

Sum

ON-sum

ON-diff

Masking

 
Figure 14.  plots of detection  model predictions vs. detection performance for two subjects. 
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Figure 15.  Sum of squared error for fits of four different models of detection with actual detection data 
for 5 different subjects.  The masking model (Ahumada and Beard) appeared to better account for the 
data. 

 
Lighting effects on detection 
 
Anti collision lights have long been improved for detection purposes and are most useful at night.  

However their usefulness in terms of improving detection during the day in the context of background 
masking has not been fully investigated.  Part of the utility of using such lights is that when they are 
abruptly modulated as with strobe lights they create strong stimulation of a highly sensitive visual 
pathway that is specialized to detect transient changes and motion.   This stimulation greatly improves the 
detection of targets associated with the flashing lights.   It has been suggested that apparent motion 
created by the asynchronous flashing of lights near each other (phi motion) would provide additional 
advantage for this pathway.  The strength of phi motion is determined by the temporal and spatial 
parameters of the flashing lights. Whether or not phi motion can improve detection beyond that already 
provided by the transient flashing of the light over the spatial and temporal ranges of typical aircraft has 
not been tested directly.  We performed experiments to measure the effects of flashing and synchrony on 
detection for simulated aviation targets.  

 
Methods 
Figure 16 shows the stimulus conditions including the masking background, the temporal profile 

of the lights and the target configuration.  The subjects’ task was choose which quadrant contained the 
target.    In the first experiment we looked at the effects of temporal frequency of the flashing on three 
modes of lighting: 1) steady wherein both lights stayed on, 2) same, wherein the lights flashed in 
synchrony, and flutter wherein the light flashed out of phase with each other. 
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Figure 16. Stimulus conditions for the dual flicker experiments.  The masking background is shown on 
the left, the target ios shown on the upper right and the temporal profile for the three modes of lighting 
are shown on the bottom right. 
 
The results from the rate experiment are shown in figure 17.  All subjects were most sensitive at about 4 
Hz where thresholds are minimal.  The steady condition shown as the open square was always the least 
detectable but there was no apparent difference between the flutter and same modes. 

 
Figure 17  Effects of strobe frequency on detection shown for 4 subjects. 
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The results from an experiment which looked at the effects of strobe separation distance are 
shown in Figure 18.  Over the range of separations tested, which are reasonable for detection of aircraft, 
show no appreciable effects other than from mode of lighting wherein again the steady condition was 
inferior for detection. 
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Figure 17.  Detection thresholds plotted as a function of strobe light separation in degrees of visual 

 third experiment looked at the effects of phase of the flashing lights as it was reasoned that 
perhaps
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A
 there was an optimal phase separation for asynchronous lights that produced the most salient phi 

motion that was not captured in the 180 deg. shift of experiments 1 and 2.  The results from this 
experiment are shown in figure 18.  Contrast thresholds were lowest (highest sensitivity) for the 5 Hz 
stimuli with a 90 degree phase shift appearing optimal although the phase differences did not reach 
statistical significance. 
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Figure 18.  Detection thresholds plotted as a function of phase of offset for the test lights at 4 different 
flicker frequencies. 
 
Learning to see 
 As described above optimal visual detection requires prior knowledge of the visual target .  We 
have developed a simple reference card for use in the cockpit (see figure 19).  This card illustrates the 
apparent sizes of typical small airplanes (e.g. Cessna 172) and airliners (e.g. Airbus A-320) at different 
distances from 2 miles to ½ mile. This card can be used by the pilot to estimate the approximate size of a 
known but undetected target. Feedback on the use of this card has been quite positive and we will 
continue to provide it to pilots as requested.  
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Note that the actual appearance and visibility of real aircraft
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and other factors.
Developed by Dr. Michael Crognale; Send any questions or comments regarding this aid
to: Dr. Crognale (mikro@unr.edu); or The Federal Aviation Administration, General Aviation and
Commercial Division; (AFS-800), Room 835, 800 Independence Avenue, S.W.,
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Figure 19.Cockpit aid for aircraft target detection. 
 
We have also developed a proof-of-concept interactive computer program to teach p[ilots how to 

see better through prior knowledge.  The program is based on traffic calls by ATC such as “Cessnna 1234 
traffic 2:00 and 2 miles, southbound. Altitude indicates 5,500 ft.”  The first part of the program 
introduces the concept of visibility in the context of the aviation environment.  The second part 
introduces 4 problem areas:1)  learning to see; 2) VFR fight into IMC; 3) background masking; and 4) 
flat light.  The third part will be interactive training in two main areas 1) learning to see other aircraft and 
2) learning to evaluate the visual environment.  The first part will cover judgments of distance, direction, 
altitude, flight path and orientation.  The second part will cover judgments of background masking 
effects, atmospheric haze , VFR into IMC, and flat light recognition. 

We have completed a preliminary version of the part of the program that trains pilots how to 
judge the appearance and elevation of aircraft traffic given the distance, direction of flight, and altitude 
from a simulated traffic call.  The trainee is also given an altimeter readout and a directional gyro readout 
in order to provide information to compute relative orientation and altitude.  The trainee’s task is to pick 
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the visual scenario that matches the traffic call, out of four possible scenarios that appear on the screen 
simultaneously.  The trainee is also provided feedback to improve learning.  This program has initially 
proven to be useful to improve detection through preliminary results.  Future goals include a polished 
easy to use program that could be distributed to pilots on CD or via download. 

 
Other Products 

ndbook Chapter.   
ipt to the FAA describing light, the human visual system, and its 

limits, 
ght 

owerpoint Educational Seminar. 
 a Powerpoint presentation has been developed to aid in the 

ng our 
as 

FAA Ha
We have submitted a manuscr
and strategies for preflight planning for optimal visual detection, and strategies for seeing and 

being seen..  Portions of this work were incorporated into the “General Aviation Pilot’s guide to prefli
weather planning, weather self-briefings, and weather decision making” compiled by Susan Parsons of 
the FAA.  The manuscript will be submitted in its entirety to an aviation Safety publication. 

 
P
An educational lecture in the form of 

educational goals. This presentation includes discussions of light phenomenon, the human visual system 
and its limits, top-down processing, masking, adaptation, and strategies for optimizing visual 
performance and for being seen.  We have twice presented the educational seminar incorporati
results at Oshkosh.  Feedback from The attendees and the National Association for Flight Instructors w
quite positive and I have been invited to present again next year.  We are also scheduled to present this 
seminar at Sun n’Fun in Lakeland Florida in April of 2007.  A copy of this presentation is included on 
CD with this report.  
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